Publications

[1]
D. S. Katz, J. Carver, N. Chue Hong, M. Mundt, and C. Venters, “Research Software Engineering: A SWEBOK Specialism?,” in Research Software Engineering: A SWEBOK Specialism?, Ottawa, Ontario, Canada: Zenodo, Mar. 2025. doi: https://doi.org/10.5281/zenodo.14950265
[1]
P. Diehl, C. Soneson, R. C. Kurchin, R. Mounce, and D. S. Katz, “The Journal of Open Source Software (JOSS): Bringing Open-Source Software Practices to the Scholarly Publishing Communityfor Authors, Reviewers, Editors, and Publishers,” JLSC, vol. 12, no. 2, Feb. 2025, doi: https://doi.org/10.31274/jlsc.18285
[1]
J. T. Feng, S. Puthanveetil Satheesan, S. Kong, T. Donders, and S. Punyasena, “Addressing the open world: detecting and segmenting pollen on palynological slides with deep learning,” BioRxiv - Preprint, Jan. 2025, Available: https://www.biorxiv.org/content/10.1101/2025.01.05.631390v1
[1]
E. Nyenah, P. Doll, D. S. Katz, and R. Reinecke, “Software sustainability of global impact models,” Geoscientific Model Development, vol. 17, no. 23, pp. 8593–8611, Dec. 2024, doi: https://doi.org/10.5194/gmd-17-8593-2024. Available: https://gmd.copernicus.org/articles/17/8593/2024/
[1]
E. A. Jensen and D. S. Katz, “Strategic priorities and challenges in research software funding: Results from an international survey,” Research on Research, Policy & Culture, Nov. 2024, doi: https://doi.org/10.12688/f1000research.155879.1. Available: https://f1000research.com/articles/13-1447/v1
[1]
S. Druskat, L. Grunske, C. Jay, and D. S. Katz, “Research Software Engineering: Bridging Knowledge Gaps,” Dagstuhl Reports, vol. 14, no. 4, pp. 42–53, Oct. 2024, doi: https://doi.org/10.4230/DagRep.14.4.42
[1]
F. Psomopoulos et al., “Building the future of research software as a first-class citizen in science; a global perspective,” SciLifeLab, Uppsala, Sweden, Sep. 2024. Available: https://zenodo.org/records/13915755
[1]
R. Ananthakrishnan et al., “Enabling Remote Management of FaaS Endpoints with Globus Compute Multi-User Endpoints,” presented at the PEARC 2024, Jul. 2024, pp. 1–5. doi: https://dl.acm.org/doi/10.1145/3626203.3670612
[1]
D. S. Katz and J. C. Carver, “Thoughts on Learning Human and Programming Languages,” Computing in Science & Engineering, vol. 26, no. 1, pp. 77–80, Jul. 2024, doi: 10.1109/MCSE.2024.3398949
[1]
R. Van Nieuwpoort and D. S. Katz, “Defining the roles of research software (Version 2),” Upstream, Jul. 2024, doi: https://doi.org/10.54900/xdh2x-kj281
[1]
S. Grayson, F. Aguilar, R. Milewicz, D. S. Katz, and D. Marinov, “A benchmark suite and performance analysis of user-space provenance collectors,” presented at the ACM REP ’24: Proceedings of the 2nd ACM Conference on Reproducibility and Replicability, Rennes, France: Association for Computing Machinery, Jun. 2024, pp. 85–95. doi: https://doi.org/10.1145/3641525.3663627
[1]
E. Nyenah, P. Döll, D. S. Katz, and R. Reinecke, “Software sustainability of global impact models,” Geoscientific Model Development, Jun. 2024, doi: https://doi.org/10.5194/gmd-2024-97
[1]
H. Gruson, L. Wolansky, A. Kiragga, and D. S. Katz, “FAIR-USE4OS: Guidelines for creating impactful open-source software,” PLOS Computational Biology, vol. 20, no. 5, May 2024.
[1]
D. S. Katz and N. P. C. Hong, “Special issue on software citation, indexing, and discoverability,” PeerJ Computer Science, Mar. 2024, doi: https://doi.org/10.7717/peerj-cs.1951
[1]
M. Hosseini, A. O. Holcombe, M. Kovacs, H. Zwart, D. S. Katz, and K. Holmes, “Group authorship, an excellent opportunity laced with ethical, legal and technical challenges,” Accountability in Research, no. Ethics, Integrity and Policy, Mar. 2024, doi: https://doi.org/10.1080/08989621.2024.2322557
[1]
R. Ananthakrishnan et al., “Establishing a High-Performance and Productive Ecosystem for Distributed Execution of Python Functions Using Globus Compute,” in HUST-24: 11th International Workshop on HPC User Support Tools, Atlanta, GA, 2024. doi: https://doi.org/10.1109/SCW63240.2024.00083
[1]
N. Karle, B. Clifford, Y. Babuji, R. Chard, D. S. Katz, and K. Chard, “Parsl+CWL: Experiences Combining the Python and CWL Ecosystems,” in 19th Workshop on Workflows in Support of Large-Scale Science (WORKS 2024), Atlanta, GA, 2024. doi: https://doi.org/10.1109/SCW63240.2024.00255
[1]
J. M. Duarte et al., “FAIR AI Models in High Energy Physics,” Machine Learning: Science and Technology/IOP Science, Dec. 2023, doi: 10.1088/2632-2153/ad12e3. Available: https://iopscience.iop.org/article/10.1088/2632-2153/ad12e3
[1]
D. S. Katz, V. Kindratenko, O. Kindratenko, and P. Mazumdar, “Training Next-Generation Artificial Intelligence Users and Developers at NCSA,” Computing in Science & Engineering, vol. 25, no. 6, pp. 28–32, Nov. 2023, doi: 10.1109/MCSE.2024.3375572
[1]
E. A. Huerta et al., “FAIR for AI: An interdisciplinary and international community building perspective,” Scientific Journal, no. 19, Jul. 2023, doi: https://doi.org/10.1038/s41597-023-02298-6
[1]
E. McKiernan et al., “Policy recommendations to ensure that research software is openly accessible and reusable,” Plos Biology, Jul. 2023, doi: https://doi.org/10.1371/journal.pbio.3002204
[1]
D. S. Katz, B. Clifford, Y. Babuji, K. H. Kesling, A. Woodard, and K. Chard, “The Changing Role of RSEs over the Lifetime of Parsl,” presented at the PEARC 2023, Portland, OR: arXiv, Jul. 2023. doi: https://doi.org/10.48550/arXiv.2307.11060
[1]
S. Grayson, R. Milewicz, J. Teves, D. S. Katz, and D. Marinov, “Wanted: standards for automatic reproducibility of computational experiments,” presented at the PEARC 2023, in Computer Science Software Engingeering, vol. 11383. Portland, OR: arXiv, Jul. 2023. doi: https://doi.org/10.48550/arXiv.2307.11383
[1]
S. Grayson, D. Marinov, D. S. Katz, and R. MIlewicz, “Automatic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-core Registries,” in Proceedings of the 2023 ACM Conference on Reproducibility and Replicability, Santa Cruz, California: ACM, Jun. 2023, pp. 74–84. doi: 10.1145/3589806.3600037
[1]
W. F. Godoy et al., “Giving RSEs a Larger Stage through the Better Scientific Software Fellowship,” Computing in Science & Engineering (IEEE), pp. 1–10, Mar. 2023, doi: 10.1109/MCSE.2023.3253847. Available: https://ieeexplore.ieee.org/document/10064469/authors#authors
[1]
I. A. Cosden, K. McHenry, and D. S. Katz, “Research Software Engineers: Career Entry Points and Training Gaps,” Computing in Science & Engineering, pp. 1–9, Mar. 2023, doi: 10.1109/MCSE.2023.3258630. Available: https://ieeexplore.ieee.org/document/10075674
[1]
C. , Martinez-Ortiz et al., “What Do We (Not) Know About Research Software Engineering,” Journal of Open Research Software, vol. 10:11, Dec. 2022, doi: https://doi.org/10.5334/jors.384. Available: https://openresearchsoftware.metajnl.com/
[1]
T. Gamblin and D. S. Katz, “Overcoming Challenges to Continuous Integration in HPC,” Computing in Science and Engineering, vol. 24, no. 6, pp. 54–59, Dec. 2022, doi: 10.1109/MCSE.2023.3263458
[1]
M. Barker et al., “Introducing the FAIR Principles for research software,” Scientific Data, vol. 622, Oct. 2022, doi: https://doi.org/10.1038/s41597-022-01710-x t. Available: https://www.nature.com/articles/s41597-022-01710-x
[1]
E. A. Huerta et al., “FAIR for AI: An interdisciplinary, international, inclusive, and diverse community building perspective,” ArXiv, vol. arXiv:2210.08973v1, p. 10, Sep. 2022, doi: https://doi.org/10.48550/arXiv.2210.08973
[1]
Z. Li et al., “func X: Federated Function as a Service for Science,” IEEE Transactions on Parallel and Distributed Systems, pp. 1–16, Sep. 2022, doi: 10.1109/TPDS.2022.3208767. Available: https://ieeexplore.ieee.org/document/9899739/authors#authors
[1]
M. Solis, C. Pasquier, S. Nunez-Corrales, G. Madrigal-Redondo, and A. Gatica-Arias, “Estimating the performance of mass testing strategies for COVID-19: a case study for Costa Rica,” MedRxiv, Sep. 2022, doi: https://doi.org/10.1101/2022.09.05.22279618
[1]
S. Puthanveetil Satheesan, B. Bhavya, A. Davies, A. Craig, Y. Zhang, and C. Zhai, “Toward a Big Data Analysis System for Historical Newspaper Collections Research,” presented at the Platform for Advanced Scientific Computing (PASC) Conference, Basel, Switzerland, Jun. 2022.
[1]
S. Puthanveetil Satheesan, B. Bhavya, A. Davies, A. B. Craig, Y. Zhang, and C. Zhai, “Toward a big data analysis system for historical newspaper collections research,” presented at the Platform for Advanced Scientific Computing, Basel, Switzerland: Proceedings PASC 2022, Jun. 2022, pp. 1–11. doi: https://doi.org/10.1145/3539781.3539795. Available: https://doi.org/10.1145/3539781.3539795
[1]
J. C. Carver, N. Weber, K. Ram, S. Gesing, and D. S. Katz, “A survey of the state of the practice for research software in the United States,” PeerJ Computer Science, May 2022, doi: https://doi.org/10.7717/peerj-cs.963. Available: https://peerj.com/articles/cs-963/
[1]
M. A. Parsons, D. S. Katz, M. Langseth, H. Ramapriyan, and S. Ramdeen, “Credit Where Credit Is Due,” Eos Science News by AGU, May 2022, doi: https://doi.org/10.1029/2022EO220239. Available: https://eos.org/opinions/credit-where-credit-is-due
[1]
S. P. Mudigonda, S. Nunez-Corrales, R. Venkatachalapathy, and J. Graham, “Scheduler Dependencies in Agent-Based Models: A Case-Study Using a Contagion Model,” in Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas, Chicago: Springer, Mar. 2022. doi: https://doi.org/10.1007/978-3-030-96188-6_5. Available: https://meetings.aps.org/Meeting/MAR22/Session/T08.7
[1]
L. Marini et al., “Applications and Roadmap of the Clowder Open Source Data Management Framework,” presented at the Australasian Computer Science Week, Brisbane, Australia (Hybrid), Feb. 2022.
[1]
S. Nunez-Corrales, M. Friesen, S. Mudigonda, R. Venkatachalapathy, and J. Graham, “In-Silico Models With Greater Fidelity to Social Processes: Towards ABM Platforms With Realistic Concurrency,” in Proceedings of the 2020 Conference of The Computational Social Science Society of the Americas, Virtual, November 2021, Jan. 2022, pp. 155–169. doi: 10.1007/978-3-030-83418-0_10. Available: https://link.springer.com/chapter/10.1007/978-3-030-83418-0_10
[1]
D. S. Katz and S. Stall, “The 2021 NISO Plus Conference: Global connections and global conversations,” Information Services & Use, vol. 41, no. 1–2, pp. 39–42, Dec. 2021, doi: 10.3233/ISU-210108
[1]
C. Jay, R. Haines, and D. S. Katz, “Software Must be Recognised as an Important Output of Scholarly Research,” International Journal of Digital Curation, vol. 16, no. 1, Dec. 2021, doi: DOI: https://doi.org/10.2218/ijdc.v16i1.745
[1]
D. S. Katz, F. E. Psomopoulos, and L. J. Castro, “Working Towards Understanding the Role of FAIR for Machine Learning,” DaMaLOS 2021, Oct. 2021.
[1]
K. McHenry, “EarthCube GeoCODES - Data Plus X Towards a Geoscience Scientific Gateway,” Gateways 2021, Oct. 2021.
[1]
S. Malik et al., “Software Training in HEP,” Computing and Software for Big Science, vol. 22, Oct. 2021, doi: https://doi.org/10.1007/s41781-021-00069-9
[1]
J. Salamanca and S. Nunez-Corrales, “Social Viscosity, Fluidity, and Turbulence in Collective Perceptions of Color: An Agent-Based Model of Color Scale Convergence,” Proceedings of the 2019 International Conference of The Computational Social Science Society of the Americas, pp. 191–212, Oct. 2021, doi: 10.1007/978-3-030-77517-9_13
[1]
T. Nicholson et al., “Creating a Permafrost Discovery Gateway - Providing Researchers and the Public with access to arctic data,” presented at the Science Gateways 2022, San Diego, CA: Science Gateways, Oct. 2021. doi: https://doi.org/10.5281/zenodo.5569811
[1]
D. LeBauer, M. Burnette, N. Fahlgren, R. Kooper, K. McHenry, and A. Stylianou, “What Does TERRA-REF’s High Resolution, Multi Sensor Plant Sensing Public Domain Data Offer the Computer VisionCommunity?,” presented at the Computer Vision in Plant Phenotyping and Agriculture (CVPPA), 2021., Virtual, Oct. 2021.
[1]
T. Nicholson et al., “Creating a Permafrost Discovery Gateway - Providing Researchers and the Public withaccess to arctic data,” Gateways 2021, Oct. 2021.
[1]
D. S. Katz, K. McHenry, and J. Lee, “Senior  level  RSE  career  paths,” presented at the Dan Katz Blog, Virtual, Sep. 27, 2021. Available: https://danielskatzblog.wordpress.com/2021/09/27/senior-rse-paths
[1]
L. Marini, T. Nicholson, and K. McHenry, “Leveraging Open Source Technologies to Support Arctic Permafrost Science,” presented at the Polar Data Forum, Virtual, Sep. 2021.